Erik Tate-Boldt¹, Colin Saunders¹, Sue Newman¹, Chris Hansen^{1,2}

¹ South Florida Water Management District, West Palm Beach, FL, USA

² Florida Atlantic University, Boca Raton, FL, USA

- I. Decompartmentalization Physical Model (DPM)
- II. Flow as an ecosystem driver:
 - I. Dissolved Oxygen
 - II. Aquatic Metabolism
- **III.Sudden Changes in Flow**
- IV. Discussion of models

- I. Decompartmentalization Physical Model (DPM)
- II. Flow as an ecosystem driver:
 - I. Dissolved Oxygen
 - II. Aquatic Metabolism

High-flow Site

- Productivity was net heterotrophic
 - Similar to (McCormick et al 1997, Hagerthey et al. 2010)

- I. Decompartmentalization Physical Model (DPM)
- II. Flow as an ecosystem driver:
 - I. Dissolved Oxygen
 - II. Aquatic Metabolism
- **III.Sudden Changes in Flow**

2015 Pulse Test

- I. Decompartmentalization Physical Model (DPM)
- II. Flow as an ecosystem driver:
 - I. Dissolved Oxygen
 - II. Aquatic Metabolism
- **III.Sudden Changes in Flow**
- IV. Discussion of models

Aquatic Metabolism Models

- Single Station Oxygen Budget
 - NAP = $\Delta O_2 / \Delta t$
 - Staer et al. 2010
 - Used as standard lake model

Upstream Site

Downstream Site

- Two Station Oxygen Budget
 - "Upstream-downstream model"
 - NAP = ΔO_2 (downstream $DO_{t=0}$ upstream $DO_{t=-T}$)/ Δt
 - Marzolf et al. 1994
 - Used on rivers

Upstream/Downstream Method

Upstream Site

Downstream Site

Conclusions

- Aquatic production decreased under high-flow compared to lowflow.
- Daily range of the DO diurnal curve was reduced during flow which translates to reduced aquatic respiration.
- Single-station oxygen budget method able to detect changes in aquatic metabolism.
- The change in production and respiration rates likely has an impact on phosphorus and organic matter budgets which may have implications for Everglades restoration See Colin Saunders' presentation.

